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Large-scale simulations have been performed on the current-driven two-dimensional XY gauge glass model
with resistively shunted-junction dynamics. It is observed that the linear resistivity at low temperatures tends
to zero, providing strong evidence of glass transition at finite temperature. Dynamic scaling analysis demon-
strates that perfect collapses of current-voltage data can be achieved with the glass transition temperature Tg

=0.22, the correlation length critical exponent �=1.8, and the dynamic critical exponent z=2.0. A genuine
continuous depinning transition is found at zero temperature. For creeping at low temperatures, critical expo-
nents are evaluated and a non-Arrhenius creep motion is observed in the glass phase.

DOI: 10.1103/PhysRevB.78.054519 PACS number�s�: 74.25.�q, 68.35.Rh, 64.70.Q�, 05.10.�a

I. INTRODUCTION

The evidences to support the existence of a vortex glass
�VG� phase in strongly disordered type-II superconductors
have been reported in many experiments by the dynamic
scaling of the measured current-voltage data.1 Theoretically,
the XY gauge glass model2,3 is often used to describe the VG
phase although it lacks some of the properties and symme-
tries due to the absence of net magnetic fields.4–6 Now there
is general consensus that a finite-temperature VG transition
occurs in the three-dimensional gauge glass model.7

The situation is, however, much less clear in two dimen-
sions �2D�. The experimental quest of the VG transition in
high-Tc cuprate films8,9 has provided continuous excitement
and puzzles. Recently, in positionally disordered Josephson-
junction arrays with maximal disorder strength10 where the
2D gauge glass model is realized, a possible finite-
temperature glass transition has been observed experimen-
tally. On the theoretical side, the existence of a finite-
temperature glass transition in the 2D gauge glass model
remains a topic of controversy.11–20 It is predicted that, in the
zero-temperature numerical renormalization-group studies of
domain walls and the calculations of stiffness exponents,
there is no ordered phase at any finite temperature in 2D.12,13

On the other hand, the finite-temperature glass transition
�Tg�0.2J� has also been supported by extensive resistively
shunted-junction �RSJ� dynamic simulations16–18 and Monte
Carlo simulations.20

The depinning transition at zero temperature and the creep
motion at low temperatures have attracted considerable at-
tention both analytically21–23 and numerically24–26 in a large
variety of physical systems, such as charge-density waves in
solids, field-driven motion of domain walls in ferromagnets,
and flux lines in type-II superconductors. Since the nonlinear
dynamic response in these systems produces a rich physical
picture, there has been increasing interest in studies of these
phenomena.

In this paper, based on the RSJ dynamics, we perform
large-scale dynamic simulations on the 2D gauge glass
model. Both the glass transition temperature Tg and the criti-
cal exponents are estimated. The depinning transition at zero
temperature and the creep motion below Tg are also investi-

gated. The rest of the paper is organized as follows. Section
II describes the model and dynamic method. Section III pre-
sents the main results where some discussions are also made.
Finally, a short summary is given in the last section.

II. MODEL AND DYNAMIC METHOD

The Hamiltonian of the 2D gauge glass model is given
by11

H = − J0�
�ij�

cos��i − � j − Aij� , �1�

where the sum is over all nearest-neighbor pairs on a 2D
square lattice, �i specifies the phase of the superconducting
order parameter on grain i, J0 denotes the strength of Joseph-
son coupling between neighboring grains, and the quenched
variable Aij is distributed uniformly in the interval �−� ,��.
The present simulations are carried out with the system size
L=128 for all directions.

The RSJ dynamics is incorporated in simulations, which
can be described as

��

2e
�

j

��̇i − �̇ j� = −
�H

��i
+ Jext,i − �

j

�ij , �2�

where Jext,i is the external current, which vanishes except for
the boundary sites. The �ij is the thermal noise current with
zero mean and correlator ��ij�t��ij�t���=2�kBT��t− t��. In
the following, the units are taken to be 2e=J0=�=�=kB=1.

In the present simulations, a uniform external current Ix
along the x direction is fed into the system. The fluctuating
twist boundary condition27,28 is applied in both directions.
The supercurrent between sites i and j is now given by
Ji→j

�s� =J0 sin�	i−	 j −Aij −rij ·�� with 	i=�i+ri ·� and �
= �
x ,
y� as the fluctuating twist variable. The new phase
angle 	i is periodic in both x and y directions. Then, the
dynamics of �� can be written as


̇� =
1

L2 �
�ij��

�Ji→j
�s� + �ij� − I�, � = x,y . �3�

The voltage drop is V=−L
̇x.
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The above equations can be solved efficiently by a pseu-
dospectral algorithm29 due to the periodicity of the phase in
all directions. The time stepping is done using a second-order
Runge-Kutta scheme with 
t=0.05. The time-averaged volt-
ages are calculated over a long-time scale after reaching the
steady state. To determine the steady state, we have checked
�V�n for every �2n−2n−1� time steps. We assume that the sys-
tem reaches a steady state when the fluctuation of the mean
voltage 	��V�n− �V�n−1� / �V�n	 is less than 0.5% for several n’s
after n=20. Once this criterion is satisfied, we record the
�V�n as the final estimate of the voltage V. The value of n is
typically 25 in the present simulations. The detailed proce-
dure in the simulations was described in Ref. 29. We have
performed simulations with ten different realizations of dis-
order and observed that the results are quite close from
sample to sample so good self-averaging effects exist in the
present large systems. This point is also supported by a re-
cent study in Josephson-junction arrays by Um et al.19 Our
results below are averaged over ten realizations of disorder.
For the results presented in the following figures, error bars
are smaller than or comparable with the symbol size.

III. SIMULATION RESULTS AND DISCUSSIONS

First, we study the possible glass phase transition. The
glass transition temperature was estimated to be Tg�0.20 by
several groups.17,18,20 The current-voltage characteristics are
measured at various temperatures ranging from 0.1 to 0.5,
which cover the previous Tg. At each temperature, we try to
probe the system at currents that are as low as possible.
Figure 1 displays the resistivity R=V / I as a function of cur-
rent I at various temperatures in a log-log scale. It is obvious
that, at lower temperatures, R tends to zero as the current
decreases, suggesting that there is a true superconducting
phase with zero linear resistivity. While at higher tempera-
tures, R tends to a finite value, corresponding to Ohmic re-
sistivity in the vortex liquid. These observations reveal
strong evidence of the existence of the low-temperature glass
phase in the 2D gauge glass model.

Assuming that the VG transition is continuous and char-
acterized by the divergence of the characteristic length and
time scales t
�z �z is the dynamic exponent�, Fisher et al.30

proposed the following dynamic scaling ansatz to analyze
the glass transition from a vortex liquid with Ohmic resistiv-
ity to a superconducting glass state,

TR�z+2−d = ��I�d−1/T� , �4�

where d is the dimension of the system �d=2 in this paper�,
�� 	T /Tg−1	−� is the correlation length that diverges at the
transition, and ��x� are scaling functions for T�Tg and
T�Tg, respectively. Equation �4� is often used to scale the
measured current-voltage data in the VG transitions in ex-
periments.

To extract the critical behavior from the numerical results
of the current-voltage characteristics, we also perform a dy-
namic scaling analysis. As shown in Fig. 2, with Tg
=0.22�0.02, z=2.0�0.1, and �=1.8�0.1, an excellent col-
lapse is achieved according to Eq. �4� except for the curve of
T=0.1. The errors are estimated by tuning these critical val-
ues until the collapses become poor evidently. The curve at
T=0.1 is obviously beyond the critical regime.

The finite-size effects are particularly significant at tem-
peratures sufficiently close to Tg when the correlation length
exceeds the system size. For the temperatures considered
here and the very large system size L=128, we believe that
the finite-size effects are negligible in the present simula-
tions. To confirm this point, we perform particular simula-
tions right at Tg=0.22 obtained above for different system
sizes. At Tg, the correlation length is cut off by the system
size in any finite system so the scaling form Eq. �4� becomes

TgRLz = �IL/Tg� . �5�

A good collapse is illustrated in Fig. 3 with z=2.0. This
consistency demonstrates that the results estimated from Fig.
2 are reliable. Therefore evidence of a finite-temperature
glass transition is provided convincingly in the 2D gauge
glass model.

The obtained Tg and dynamic exponent z are well consis-
tent with those in equilibrium RSJ simulations17 and Monte
Carlo simulations.20 The value of � estimated here is larger
than those �i.e., 1.1–1.2� obtained in several simulations17,20

but still falls in the range of 1.0–2.0 usually observed at the
VG transitions experimentally. Within the same RSJ dynam-
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FIG. 1. Log-log plots of I-R curves at various temperatures.
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ics, the finite-size scaling for the linear resistivity for sample
sizes L�10 gives �=1.2�2� in Ref. 17. The discrepancy may
originate from the different scaling method and sizes used. In
a previous conference paper18 by one of the present author
and collaborators, with the uses of a different simulation ap-
proach and a scaling form different from Eq. �4� slightly by
removing temperature T, Tg=0.22, z=2.0, and �=1.2 were
obtained. The present simulation gives larger value of �.

Based on the analysis of data at temperatures above Tg
=0.22, previous RSJ simulations14,15 with an open boundary
condition in the 2D gauge glass model demonstrated a zero-
temperature criticality. It has been shown that the voltage
drop next to the boundary regime is particularly large and
dominates the total voltage drop across the sample at low
currents.27,31,32 Therefore, one should measure the voltage
drop inside the sample.28,32 So the conclusion based on the
total voltage drop across the system with the open boundary
condition14,15 may not be reliable.

Interestingly, in experiments on Nb wire networks,33 the
critical exponents �=1.7–1.9 were obtained for high filling
factors f =1 /2,0.618, and 2/5, which are very close to the
present value. It was suggested in Ref. 10 that the supercon-
ducting state and transitions in the networks become inde-
pendent of f in the gauge glass limit. Further work is needed
to clarify the relation between the experimental observations
and the present simulations.

To shed some light on the nature of this low-temperature
glass phase, we will study the depinning and creep phenom-
ena.

At zero temperature, we start from high currents with ran-
dom initial phase configurations. The currents are then low-
ered step by step. The steady-state phase configurations ob-
tained at higher currents are chosen to be the initial phase
configurations of lower currents in the next step. It becomes
more and more difficult to measure the voltage with decreas-
ing currents. In the vicinity of the critical current, a huge
amount of computer time is consumed to get accurate results.
Figure 4 presents the current-voltage characteristics at T=0
in a log-log scale. We observe a continuous depinning tran-
sition with a unique depinning current,34 which can be de-
scribed as V� �I− Ic�� with Ic=0.2165�0.0005 and �
=1.892�0.003. Note that the depinning exponent � is

greater than one, consistent with the mean-field studies of
charge-density wave models.34

At low temperatures, the current-voltage characteristics
are rounded near the zero-temperature critical current due to
thermal fluctuations. An obvious crossover between the de-
pinning and creep motion can be observed around Ic at lower
accessible temperatures. In order to address the thermal
rounding of the depinning transition, Fisher34 first suggested
mapping this system to ferromagnets in fields where the
second-order phase transitions occur. This mapping was later
extended to the random-field Ising model24 and flux lines in
type-II superconductors.25 If the voltage is identified as the
order parameter, the current and temperature are equivalent
to the inverse temperature and the field in ferromagnetic sys-
tems, respectively, analogous to the second-order phase tran-
sitions, a scaling relation among the voltage, current, and
temperature in the present model should follow the form

V�T,I� = T1/�S�T−1/���1 − Ic/I�� , �6�

where S�x� is a scaling function with S�x→0�=const.
It is implied in Eq. �6� that right at I= Ic the voltage shows

a power-law behavior V�T , I= Ic��T1/�, providing a tool to
determine the critical exponent 1 /�. The log-log V-T curves
are plotted in Fig. 5 at three currents around Ic. We can see
that the critical current is between 0.21 and 0.22. The values
of voltage at other currents within �0.21 and 0.22� can be
evaluated by quadratic interpolation. The square deviations
from the power law can be calculated. The current at which
the square deviation is minimum can be considered as the
critical current Ic=0.2165�0.0005, consistent with that ob-
tained at zero temperature. The temperature dependence of
voltage at the critical current is also exhibited in Fig. 5,
yielding 1 /�=1.046�0.002.

With the values of �, �, and Ic obtained above, according
to the scaling relation Eq. �6�, a scaling plot of the simulated
current-voltage data in a wide range of temperature is pre-
sented in Fig. 6 without any adjustable parameter. A perfect
collapse of the data for temperatures T�0.10, far below Tg
=0.22, to a single curve for currents less than Ic is clearly
shown. This collapse can be fitted well to an exponential
function y=0.0417 exp�1.17x�, which is also plotted in Fig. 6
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with a solid line. Note that the product of the two exponents
�� describes the temperature dependence of the creep law.
Interestingly, ���1.81 deviates from unity, demonstrating
that the creep law is a non-Arrhenius type. At higher tem-
peratures, say T�0.1, deviations from the scaling relation
are also observed in Fig. 6, which can be attributed to strong
thermal fluctuations. The non-Arrhenius type creep phenom-
ena only take place at low temperatures.

IV. SUMMARY

We have performed large-scale dynamic simulations of
the 2D gauge glass model within the RSJ dynamics. The
strong evidence of the low-temperature glass phase is pro-
vided in the dynamic sense. By the dynamic scaling analysis,
two perfect collapses of simulated current-voltage data
are achieved with Tg=0.22�0.02, z=2.0�0.1, and �
=1.8�0.1. The values of Tg and z are in agreement with
those in the previous equilibrium Monte Carlo simulations.
The value of � is larger than that in literature, which is,
however, closer to that in experiments in the gauge glass
limit. We have also studied the depinning transition at zero

temperature and creep motion at low temperatures in detail.
A genuine continuous depinning transition is observed at
zero temperature. With the notion of scaling, and the critical
exponents obtained from the simulations at zero temperature
and at the critical current, a perfect collapse of the current-
voltage data at low temperatures is exhibited. The value of
�� deviates from unity and the scaling curve is fitted well by
an exponential function, suggesting a non-Arrhenius type
creep motion in the glass phase of the 2D gauge glass model.

It is worthy to note that in this model the current-voltage
characteristics in the whole temperature regime below Tg can
almost be described in the framework of two critical phe-
nomena. One is the thermal rounding of the depinning tran-
sition, which is a second-order-like phase transition. The
other is the celebrated VG transition. Further experimental
and theoretical studies are needed to clarify the relation be-
tween the present observations and experimental findings.
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